首页> 外文OA文献 >A joint model for 2D and 3D pose estimation from a single image
【2h】

A joint model for 2D and 3D pose estimation from a single image

机译:用于从单个图像估计2D和3D姿势的联合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a novel approach to automatically recover 3D human pose from a single image. Most previous work follows a pipelined approach: initially, a set of 2D features such as edges, joints or silhouettes are detected in the image, and then these observations are used to infer the 3D pose. Solving these two problems separately may lead to erroneous 3D poses when the feature detector has performed poorly. In this paper, we address this issue by jointly solving both the 2D detection and the 3D inference problems. For this purpose, we propose a Bayesian framework that integrates a generative model based on latent variables and discriminative 2D part detectors based on HOGs, and perform inference using evolutionary algorithms. Real experimentation demonstrates competitive results, and the ability of our methodology to provide accurate 2D and 3D pose estimations even when the 2D detectors are inaccurate.
机译:我们引入了一种新颖的方法,可以从单个图像自动恢复3D人体姿势。之前的大多数工作都遵循流水线方法:首先,在图像中检测到一组2D特征(如边缘,关节或轮廓),然后使用这些观察值推断3D姿态。当特征检测器的性能不佳时,分别解决这两个问题可能会导致错误的3D姿势。在本文中,我们通过共同解决2D检测和3D推理问题来解决此问题。为此,我们提出了一个贝叶斯框架,该框架集成了基于潜变量的生成模型和基于HOG的判别式2D零件检测器,并使用进化算法进行推理。真实的实验证明了具有竞争力的结果,并且即使2D检测器不准确,我们的方法也能够提供准确的2D和3D姿态估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号